NEUTRON YIELD FROM A LEAD-BISMUTH SPALLATION TARGET

James E. Platte
University of Michigan
D-10

Mentor: Michael R. James

Spallation Basics:

The Process

- ¥ Nuclear process similar to fission, but does not necessarily result in two nuclei after reaction
- ¥ Occurs when high energy particle (i.e. neutron, proton, pion) collides with a heavy nucleus and deposits energy
- ¥ After collision, the nucleus may emit some nucleons, and leaves the nucleus in an excited state
- ¥ In de-excitation, the nucleus evaporates and emits many more nucleons, most of which are on the order of a few MeV

Spallation Basics:

The Process

Spallation Basics:Neutron Energy Spectrum

Experiment Objectives

- ¥ Irradiate a lead-bismuth target with 800 MeV proton beam at LANSCE
- ¥ Perform gamma spectroscopy on metal foils placed on the target during the irradiation that were activated by neutrons from the target
- **YES** From spectrum analysis, determine neutron flux from target both axially and radially
- ¥ Compare foil activation results with calculations from the high-energy physics code MCNPX

1. Target Irradiation

- ¥ The target was a solid lead-bismuth (44.5 w/o Bi, 55.5 w/o Pb) eutectic cylinder 50 cm long and 40 cm in diameter, and was placed in the center of the beam path
- ¥ Foil stacks containing Bi, Au, Co, Fe, In, Cu, Tb, Ni, and Al were attached at axial positions of 0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 30 cm, 40 cm, and 50 cm from the target face along the top
- ¥ Foil stacks (without Tb) were also attached every 45... radially at the 15 cm and 40 cm axial positions
- **Yes** These foils chosen because they contain threshold reactions that will display different regions of the flux
- ¥ LANSCE proton beam run at an energy of 800 MeV, a current of about 50 nA, and a duration of 12 hours

1. Target Irradiation

Blue Room Setup

1. Target Irradiation *Foil Placement*

2. Gamma Spectroscopy

- ¥ Foils were removed from target after irradiation and moved over to a counting area at LANSCE (some foils also sent to TA-48)
- ¥ Two germanium detectors were used to count the activities, and the spectra were recorded with GammaVision
- ¥ Foils counted multiple times to observe both short and long-lived isotopes
- **Y** Gamma lines for certain reactions identified [i.e. (n,xn), (n,p), (n,alpha), (n,n)]
- ¥ Background and calibration counts also performed to identify background lines and determine efficiencies

2. Gamma Spectroscopy *Detector and Foil Examples*

2. Gamma Spectroscopy

Sample Spectrum

A7271002002

Foil 8318 (Bi) Det 7 @ 10.09 cm to card

Acquired: 7/10/2002 2:24:32 PM

File: E:\July experiment\AAA\071002\A7271002002.Chn

Detector: #7 Ortec detector #7, Vertical

2. Gamma Spectroscopy

Peak Identification

Isotope (% of foil)	Reaction	Product	Threshold (MeV)	Branching (%)	Gamma Line(s) (keV)	I _g (%)
In-115 (95.71%)	(n,n')	In-115m	0.34	95	336.24 keV	45.8
					374.72 keV	82
Bi-209 (100%)	(n,6n)	Bi-204	36	100	899.15 keV	98
					984.02 keV	59

End of Irradiation Activity (cps/g)

$$A_0 = \frac{N\lambda \exp(\lambda t_1)}{m(1 - \exp(-\lambda t_2))}$$

where,

N = net counts in peak, $m = \text{mass of foil (g)}, \lambda = \text{decay constant of isotope (s}^{-1})$

 t_1 = time from end of irradiation to start of count (s)

 t_2 = live time of count (s)

3. Neutron Flux

Axial (Bi-204)

3. Neutron Flux

Axial Comparison

In-115m/Bi-204 (374.72 keV) Count Rate Comparison

Distance from front face (cm)

3. Neutron Flux

Radial (Bi-204)

Los Alamos

Conclusion

- ¥ Foils were irradiated as planned and counting of shortlived and long-lived isotopes is occurring
- **Y** Select expected reactions and their corresponding gamma lines were found in the foil spectra
- ¥ Axial flux along the top of the target behaved as predicted by MCNPX, with the peak flux shown by the 15 cm foil packet
- ¥ Flux was not isotropic radially, the beam appears to have been slightly high and to the right of the center of the target

Future Work

¥ Work out accurate efficiency curves for both detectors, and investigate background to determine consistency

¥ Continue to perform gamma spectroscopy on all foil spectra to investigate reactions found in the foils, study half-life behavior, and confirm beam position

¥ Input activation data into the spectral unfolding code

STAYSL

¥ Go Blue!

Acknowledgements

¥ Mike James for hosting, helping, and putting up with me

- **¥** Danny Lowe for expert MCNPX modeling
- The rest of the experiment team:
 Gregg Chaparro, Ray Klann,
 George Morgan, Jean Oostens,
 Mike Paciotti, Valentina
 Tcharnotskaia, and Keith
 Woloshun

Thanks Everyone!

